Tercera Jornada Ceiden-UPM: “Machine Learning in Nuclear Science and Technology Applications” Date 14 May 2021, from 09:00 to 13:00h. Review of the event (Spanish) Presentations Introduction and Program Tadahiro Kin (Kyushu University, Japan) – «ML in radiation metrology: Application of Gamma-ray spectrometry» Berenguer Bríquez (Tecnatom) – «Machine Learning in Nuclear Science and Technology Applications» Adrián Sánchez (CIEMAT) – «Deep Learning applied to Capture Cross Section Data Analysis» Aris Villacorta (CIEMAT) – «Unsupervised Learning for nuclear fuel cycle applications« Emilio Mendoza (CIEMAT) – «Machine learning applied to modelling of nuclear deexcitation cascades» Arnau Albà (Paul Scherrer Institut, Switzerland) – «Surrogate Models for Uncertainties on Decay Heat and Nuclide Inventory in Nuclear Depletion Calculations» Ahmed Shama (Paul Scherrer Institut) – «Predicting the Bias in Calculations of Spent Nuclear Fuel Characteristics» Joachim Hansson (Uppsala University, Sweden) – «Gaussian Processes and Levenberg-Marquardt» Virginie Solans (Uppsala University, PSI) – «Optimization of spent fuel canister loading using a neural network and genetic algorithm» INGENIA UPM – «Machine Learning techniques in V&V of Nuclear Data Bases» INGENIA UPM – «Machine learning in Reactor-oriented applications» Norberto Sebastián Schmidt (Bariloche Atomic Center, Argentina) – «Neutron and gamma beam simulation using OpenMC and Python’s libraries for Machine Learning» Denise Neudecker (Los Alamos National Laboratory, USA) – «Using Machine Learning Algorithms for Large-scale Nuclear-data Validation» Georg Schnabel (IAEA) – «Annonuncement of Technical Meeting AI4Atoms» Summary record