Cristina Ratero, Alexey Stankovskiy, Pablo Romojaro

Benchmarking of JENDL-5 and JEFF-4T2 in depletion calculations against isotopic inventories

Belgian Nuclear Research Centre

sck cen

1. Introduction

Validation of ALEPH Code by using experiments from MALIBU Program

2. Evaluated model

Sample selected for validation

GGM1 from Gösgen Reactor (PWR), measured by PSI Laboratory

GGM1: MOX sample

Burnup: 66.8 MWd/kgHM

Irradiation history - GGM1

sck cen

2. Evaluated model

Modelling a PWR fuel assembly

- > 1 fuel assembly
- > Variation of B with time
- > Pu vector (%wt):
 - ²³⁸Pu: 1.49
 - ²³⁹Pu: 60.34
 - ²⁴⁰Pu: 25.56
 - ²⁴¹Pu: 7.35
 - ²⁴²Pu: 5.25
- \succ T_{mod}=T_{clad}=582K
- ≻ T_{fuel}=900K
- \blacktriangleright Height = 1 cm
- Provided irradiation history
- Fuel pins depleted as 3 single materials
- NDL: JEFF-3.3, ENDF/B-VIII.0, JENDL-5, JEFF-4T2

 $>0 \rightarrow$ Overestimation of the nuclide concentration by ALEPH

Analyze the source of discrepancies for ²⁴⁴Pu and **Sm** isotopes

GGM1 - Reference date

Isotopes

JEFF-3.3

JENDL-5

Observations

- Main contributors to ²⁴⁴Pu production (²⁴³Pu and ^{244m}Am) not present in JENDL-5.
- 6 orders of magnitude of difference (negligible contribution of ²⁴⁸Cm).
- Path of ^{244m}Am decay through β +/EC not contemplated in JENDL-5 (all decay path drives to ²⁴⁴Cm).

 $\frac{dN}{dt} \left[\frac{at}{cm^3 s} \right]$

JEFF-3.3

JENDL-5

Origin of discrepancies

- Missing ²⁴³Pu XS files in JENDL-5
- Missing ^{244m}Am RDD •

 $\frac{dN}{dt} \left[\frac{at}{cm^3 s} \right]$

3000

Optimization of JENDL-5 for ²⁴⁴Pu

GGM1 - Reference date - Actinides

3. Evaluation of JENDL-5 library

Optimization of JENDL-5 for ²⁴⁴Pu

Isotopes

3. Evaluation of JENDL-5 library Sm isotopes

JEFF-3.3

	n,g	n,gx	n,el	n,f	n,tot
JEFF33	3.02121e+01	9.86012e+00	2.93064e+01	0.00000e+00	7.07180e+01
JENDL5	4.08035e+01	0.00000e+00	3.46087e+01	0.00000e+00	7.64603e+01

JENDL-5

1e11

2.5

2.0

 $\left[\frac{at}{cm^{3}s}\right]$

종 당 1.0

0.5

0.0

0

Depletion Rate of ¹⁴⁷Pm per DAUGHTER using JENDL-5

2000

Time [d]

¹⁴⁸Pm

3000

¹⁴⁷Sm

1000

$147 \text{Sm} (n, \gamma) = 148 \text{Sm}$ $147 \text{Pm} (n, \gamma) = 148 \text{Pm} (n, \gamma) = 149 \text{Pm} (n, \gamma) = 149 \text{Pm} (n, \gamma) = 150 \text{Sm} (n, \gamma) = 151 \text{Sm} (n, \gamma) =$

- Problems with ¹⁴⁸Sm,¹⁴⁹Sm and ¹⁵⁰Sm estimation with JENDL-5
- ¹⁴⁸Pm and ^{148m}Pm are mainly produced by captures of ¹⁴⁷Pm → Check ¹⁴⁷Pm one-group XS from ALEPH
- ¹⁴⁷Pm (n,gx) one-group XS is zero in JENDL-5

3. Evaluation of JENDL-5 library Sm isotopes

JEFF-3.3

	n,g	n,gx	n,el	n,f	n,tot
JEFF33	3.02121e+01	9.86012e+00	2.93064e+01	0.00000e+00	7.07180e+01
JENDL5	4.08035e+01	0.00000e+00	3.46087e+01	0.00000e+00	7.64603e+01

JENDL-5

1e11

2.5

2.0

 $\left[\frac{at}{cm^{3}s}\right]$

종 당 1.0

0.5

0.0

0

1000

2000

Time [d]

¹⁴⁸Pm

3000

¹⁴⁷Sm

Depletion Rate of ¹⁴⁷Pm per DAUGHTER using JENDL-5

- Problems with ¹⁴⁸Sm,¹⁴⁹Sm and ¹⁵⁰Sm estimation with JENDL-5
- ¹⁴⁸Pm and ^{148m}Pm are mainly produced by captures of ¹⁴⁷Pm → Check ¹⁴⁷Pm one-group XS from ALEPH
- ¹⁴⁷Pm (n,gx) one-group XS is zero in JENDL-5

Daughter	Devent	Reaction rates (at/cm ³ ·s)		
Daughter	Parent	JEFF-3.3	JENDL-5	
¹⁴⁸ Pm	¹⁴⁷ Pm	7.7129E+10	9.9259E+10	
^{148m} Pm	¹⁴⁷ Pm	2.5171E+10	0.0000E+0	

 Missing branching ratio for the production of metastable state of ¹⁴⁸Pm through radiative captures in ¹⁴⁷Pm

Optimization of JENDL-5 for Sm isotopes

Isotopes	Relative error between PSI and ALEPH models (%)				
	JEFF-3.3	ENDF/B-VIII.0	JENDL-5	JENDL-5 with missing files from JEFF-3.3	
Sm-148	+17.293	+16.643	+29.95	+13.827	
Sm-149	-1.182	-2.479	-12.1235	-2.1735	
Sm-150	-7.135	-9.358	-16.978	-9.362	

4. Evaluation of JEFF-4T2 library

1.4

1.2 ·

1.0

0.8

0.6

0.4

0.2

0.0

0

GGM1 - Reference date - Fission Products

ISC: Restricted

4. Evaluation of JEFF-4T2 library

GGM1 - Reference date - Actinides

Currently working on it

4. Evaluation of JEFF-4T2 library

Impact of XS and FPY files

- Evolution of JEFF-4T2 (yellow) and JEFF-4T2 with FPY from JEFF-3.3 (purple) is very similar and the responsible of the biggest discrepancies among models → Differences come from XS files
- FPY does not have a real impact

5. Conclusions

3 Sources of discrepancies in JENDL-5

□ The ²⁴⁴Pu prediction by JENDL-5 can be improved by including files corresponding to:

- ²⁴³Pu neutron transport;
- ^{244m}Am radioactive decay data.
- Discrepancies for Sm isotopes will be reduced with the inclusion of:
 - ¹⁴⁷Pm branching ratio for radiative capture.

Performance of JEFF-4T2

□ Improvement on the results for MOX sample.

□ Main effect by using XS from JEFF-4T2.

Evaluation exercises \rightarrow ensure the accuracy and reliability of the information used in research and nuclear safety.