Assessment of nuclear data libraries performance for SFR simulation

A. Jiménez-Carrascosa, N. García-Herranz, O. Cabellos

Paul Scherrer Institut (PSI), Switzerland Universidad Politécnica de Madrid (UPM), Spain

5th UPM/CEIDEN Workshop 23 May 2023 Universidad Politécnica de Madrid

- 2 Nuclear data assessment pipeline
- 3 Nuclear data assessment for SFR simulation
- 4 Conclusions and future work

- 2 Nuclear data assessment pipeline
- 3 Nuclear data assessment for SFR simulation
- 4 Conclusions and future work

- Increasing interest worldwide in Liquid Metal Fast Reactors (LMFR).
- In recent years, UPM has contributed to different European R&D projects that aim to support the design and safety assessment of advanced nuclear systems. This involves the verification and validation (V&V) of computational tools and associated databases.
- Our activities rely on the use of SCALE Code System as main computational tool.

Motivation

- Nuclear data libraries, as part of the computational scheme, are subject to V&V.
- A reasonable level of knowledge has still not bee reached for all the isotopes and reactions required for fast reactors in spite of several decades of research.
- Then, the use of different nuclear data libraries may lead to very different results, with a different uncertainty quantification.

 $^{23}{\rm Na}$ (n,n') cross section from JEFF-3.3 and ENDF/B-VII.1.

- In the frame of SANDA project, the identification of nuclear data in need of improvement is addressed.
- This will contribute to the production of a more accurate and reliable JEFF-4 library.
- Then, VVUQ activities carried out in this work aim at evaluating the performance of the JEFF-3.3 library for SFR simulation through the systematic use of legacy integral experiments provided by ICSBEP and IRPhEP databases.

- 2 Nuclear data assessment pipeline
- 3 Nuclear data assessment for SFR simulation
- 4 Conclusions and future work

Nuclear data assessment pipeline

A. Jiménez-Carrascosa. "Methodologies for enhancing the neutronic assessment of Sodium-cooled Fast Reactors: from nuclear data to transient analysis", PhD Thesis, Universidad Politécnica de Madrid, 2023.

Nuclear data assessment pipeline

A. Jiménez-Carrascosa. "Methodologies for enhancing the neutronic assessment of Sodium-cooled Fast Reactors: from nuclear data to transient analysis", PhD Thesis, Universidad Politécnica de Madrid, 2023.

- 2 Nuclear data assessment pipeline
- 3 Nuclear data assessment for SFR simulation
- 4 Conclusions and future work

Nuclear data assessment for SFR simulation Target SFR systems under analysis

- Two different SFR designs are selected, ESFR and ASTRID-like concepts.
- Results from the adjustment are applied to involved evaluated parameters.

Parameter	ESFR	ASTRID-like	
Thermal power (MWth)	3600	1500	
Coolant	Sodium	Sodium	
Fuel type	MOX	MOX	
Pu content at inner/outer zone	17.99/17.99	24.3/20.7	
Number of SA inner/outer core	216/288	177/114	
Core state	EOC	EOC	
Evaluated parameters	Multiplication factor	Multiplication factor	
	Coolant density (full void)	Coolant density (full void)	
	Doppler coefficients (\pm 300 K)		
	Control rod worth		

Nuclear data assessment for SFR simulation Approach: overview

Advanced reactor evaluation

- Criticality calculations using KENO-VI
- CE ENDF/B-VII.1 and CE JEFF-3.3 libraries
- Sensitivity analysis using TSUNAMI-3D and TSAR
- Uncertainties via the Sandwich Rule (33-group JEFF-3.3 covariance matrix)

Integral experiments evaluation

- Two different set of experiments, based on ICSBEP and IRPhEP
- Framework supported by available MCNP inputs for IR-PhEP benchmarks (sensitivities converted to .sdf format)
- CE JEFF-3.3, CE JEFF-3.1.1 and/or CE ENDF/B-VII.1

Nuclear data assessment for SFR simulation. Approach: experiment selection

• Experimental databases are set up through the **similarity assessment** (TSUNAMI-IP) with the reference targeted designs:

$$c_{k} = \frac{S_{R,\alpha}^{T} V_{\alpha,\alpha} S_{E,\alpha}}{\sqrt{(S_{R,\alpha}^{T} V_{\alpha,\alpha} S_{R,\alpha})(S_{E,\alpha}^{T} V_{\alpha,\alpha} S_{E,\alpha})}}$$

• Experimental database selected from IRPhEP targeting not only criticality cases but also sodium void effect, Doppler coefficient and control rod worth.

Nuclear data assessment for SFR simulation Approach: TSURFER framework

The framework for Data Assimilation is based on the TSURFER code (GLLS methodology).

Information provided by experimental data is transferred to the employed nuclear data library, JEFF-3.3, to improve the model output with constraint uncertainties.

5th UPM/CEIDEN Workshop

13/34

• Impact of different nuclear data libraries on SFR parameters:

Reactor	Response	JEFF-3.3	ENDF/B-VII.1	Difference (pcm)
ESFR	Multiplication factor k_{eff} Sodium void worth ρ_{Na} Doppler effect ρ_T +300 K Doppler effect ρ_T -300 K	$\begin{array}{c} 1.00378 \pm 0.00010 \\ 500 \pm 13 \\ -134 \pm 14 \\ 167 \pm 14 \end{array}$	$\begin{array}{c} 1.00072 \pm 0.00010 \\ 270 \pm 14 \\ -121 \pm 14 \end{array}$	306 230 -13
	Control rod worth $\rho_{\it CR}$	-5000 ± 14	-4805 \pm 14	-195
ASTRID	Multiplication factor k_{eff} Sodium void worth $ ho_{Na}$	$\begin{array}{c} 1.00296 \pm 0.00010 \\ -375 \pm 14 \end{array}$	$\begin{array}{c} 0.99936 \pm 0.00010 \\ -581 \pm 14 \end{array}$	360 206

• JEFF-3.3 results overestimate both multiplication factor and sodium void worth effect compared to ENDF/B-VII.1 values.

• Nuclear data uncertainty quantification results using two difference covariance matrices:

Reactor	Response	Uncertainty (%) JEFF-3.3	Uncertainty (%) ENDF/B-VIII.0	Target accuracy (%)
	k _{eff}	$\textbf{1.036} \pm \textbf{2.6E-04}$	$\textbf{0.904} \pm \textbf{1.0E-04}$	0.3
	$ ho_{Na}$	$\textbf{15.68} \pm \textbf{7.6E-02}$	$\textbf{20.45} \pm \textbf{8.2E-02}$	7
ESFR	$ ho_{T}$ +300 K	4.41 \pm 5.7E-01	3.75 ± 6.7 E-01	7
	$ ho_T$ -300 K	$4.21~\pm~5.5$ E-01	3.94 ± 7.6 E-01	7
	PCR	$1.97\pm1.1\text{E-}02$	$1.58\pm9.8\text{E-03}$	7
	k _{eff}	$\textbf{0.970} \pm \textbf{2.0E-04}$	$\textbf{0.891} \pm \textbf{5.4E-05}$	0.3
AJIRID	$ ho_{Na}$	$\textbf{22.55} \pm \textbf{7.4E-02}$	$\textbf{26.27} \pm \textbf{4.9E-02}$	7

Target accuracies exceeded for k_{eff} and ρ_{Na} Role of data adjustment techniques.

Nuclear data assessment for SFR simulation Experimental database: multiplication factor

Benchmark identifier in IRPhEP	Fuel/Other	Experimental facility	Institution
EBR2-LMFR-RESR-001	UO ₂ /Sodium	EBR-II	ANL, USA
ZEBRA-LMFR-EXP-001	Pu metal- UO_2 /Sodium	ZEBRA 22	AEEW, UK
ZPPR-LMFR-EXP-001 ZPPR-LMFR-EXP-002	MOX/Sodium MOX/Sodium	ZPPR-10A ZPPR-9	ANL, USA ANL, USA
ZPPR-LMFR-EXP-010	MOX/Sodium	ZPPR-12	ANL, USA
ZPPR-LMFR-EXP-011 ZPR-FUND-EXP-006	MOX/Sodium Pu-U alloys/Graphite	ZPPR-2 ZPR-3/53	ANL, USA ANL, USA
ZPR-FUND-EXP-007	Pu-U alloys/Graphite	ZPR-3/54	ANL, USA
ZPR-FUND-EXP-014 ZPR-LMFR-EXP-001	MOX/Sodium	ZPR-9/31 ZPR-6/7	ANL, USA ANL, USA
ZPR-LMFR-EXP-002	MOX/Sodium	ZPR-6/7	ANL, USA

Similarity matrix.

Nuclear data assessment for SFR simulation Experimental database: criticality

• These experiments are evaluated using two different nuclear data libraries:

- Average C-E deviation of 463 pcm for JEFF-3.3 results, while JEFF-3.1.1 performs slightly better.
- In general, JEFF-3.3 results systematically overestimate experimental values.
- The main sources of discrepancies are identified:

Nuclear data assessment for SFR simulation Experimental database: sodium void worth

Experiments with large sodium void worth values are particularly selected:

Benchmark identifier	Experimental facility	Core Loading
ZPPR-LMFR-EXP-010-m12030	ZPPR-12	Loading 30
ZPPR-LMFR-EXP-010-m12033	ZPPR-12	Loading 33
ZPPR-LMFR-EXP-010-m12037	ZPPR-12	Loading 37
ZPPR-LMFR-EXP-011-case08	ZPPR-2	Loading 184
ZPPR-LMFR-EXP-011-case09	ZPPR-2	Loading 185

Nuclear data assessment for SFR simulation Experimental database: Doppler effect and control rod worth

The following experiments are selected targeting Doppler effect and control rod worth:

 There is a lack of experiments in the IRPhEP database regarding Doppler measurements → SE-FOR experiments selected.

• A variety of control rod worth measurements is provided by the FFTF experiment \rightarrow Two configurations selected.

Nuclear data assessment for SFR simulation Experimental database: reactivity effects

• These reactivity experiments are evaluated using two different nuclear data libraries:

- Again, JEFF-3.3 systematically overestimate the experimental results concerning the sodium void reactivity effect.
- The main sources of discrepancies are again identified:

٩	²³ Na (n,n)
٠	²³ Na (n,n')
۲	²³⁹ Pu (n,f)
۲	239 Pu (n, γ)
۹	²³ Na (n, γ)

- Negligible deviations are observed for Doppler effect.
- JEFF-3.3 results show an excellent agreement with FFTF benchmark values, with discrepancies lower than 10 pcm.

- The established experimental database is applied with the aim of improving JEFF-3.3 results.
- Experiments might be omitted through the chi-filtering in TSURFER.
- The following information is required before performing the adjustment:
 - Prior JEFF-3.3 nuclear data covariance matrix,
 - Sensitivity profiles for every experiment-response,
 - Active responses: experiment benchmarks,
 - Passive responses: target SFR designs under analysis,
 - Experiment covariance data: scarcely available! Conservative correlations are assumed.
- As a result, a set of MG adjusted cross section and covariance data set is obtained.

- Post-assimilation results reduce the computational bias from 463 to 127 pcm concerning criticality database, obtaining a better agreement for most of experiment benchmarks.
- Simultaneously, TSURFER is able to provide a quality adjustment for reactivity effects, even though they might be reversed.

- The C/E discrepancy of sodium void effect is slightly reduced by around 35% for ZPPR-LMFR-EXP-010 cases.
- When involving sodium void reactivity effects to the adjustment, $^{239}\mathrm{Pu}~\chi$ and $^{238}\mathrm{U}$ major cross sections become the more relevant quantities to be adjusted.

• Major adjustments:

• Major adjustments:

• As a result of the adjustment, ESFR and ASTRID main responses will be impacted as follows:

Reactor	Response	JEFF-3.3 prior	JEFF-3.3 posterior	Bias (pcm)
ESFR	Multiplication factor k_{eff} Sodium void worth ρ_{Na} Doppler effect ρ_T +300 K Doppler effect ρ_T -300 K Control rod worth ρ_{CR}	$\begin{array}{c} 1.00378 \pm 0.00010 \\ 500 \pm 13 \\ -134 \pm 14 \\ 167 \pm 14 \\ -5000 \pm 14 \end{array}$	1.00130 450 -136 164 -5064	-250 -50 -2 -3 -64
ASTRID	Multiplication factor k_{eff} Sodium void worth $ ho_{Na}$	$\begin{array}{r} 1.00296 \pm 0.00010 \\ -375 \pm 14 \end{array}$	1.00040 -443	-260 -68

• Results are consistent with derived trends associated to representative experiments.

- k_{eff} results mostly improve due to ²³⁸U (n,n'), ²³⁸U (n,f), ²³⁸U (n, γ) and ²³⁹Pu $\bar{\nu}$ adjustments.
- ρ_{Na} values mostly improve due to $^{239}\mathrm{Pu}$ (n,f) and $^{56}\mathrm{Fe}$ (n,n) changes.

• Adjusted nuclear data also provide constrained uncertainties, allowing to reevaluate the nuclear data-induced uncertainty in ESFR and ASTRID parameters:

Reactor	Response	Uncertainty (%) JEFF-3.3 Prior	Uncertainty (%) JEFF-3.3 Posterior
	k _{eff}	1.036	0.306
	ρ_{Na}	15.68	7.71
ESFR	$ ho_T$ +300 K	4.41	2.56
	ρ_T -300 K	4.21	3.10
	ρ_{CR}	1.97	1.12
ASTRID	k_{eff}	0.970	0.249
AJIND	$ ho_{Na}$	22.55	10.02

- Strong uncertainty reductions are obtained, bringing k_{eff} uncertainty close or below the target accuracy.
- This is mainly due to new cross-correlations appearing in the posterior covariance matrix.

Nuclear data assessment for SFR simulation Data Assimilation: uncertainty reduction

• The posterior uncertainty breakdown points out this observation:

Prior ESFR k	eff	Posterior ESFR k_{eff}		
Quantity	$\Delta k_{eff}/k_{eff}(\%)$	Quantity	$\Delta k_{eff}/k_{eff}(\%)$	
²⁴⁰ Pu (n,f) - ²⁴⁰ Pu (n,f)	0.584	²⁴⁰ Pu (n,f) - ²⁴⁰ Pu (n,f)	0.423	
²³⁸ U (n,n') - ²³⁸ U (n,n')	0.475	$^{240}{ m Pu}$ (n,f) - $^{240}{ m Pu}$ (n, γ)	-0.326	
²³⁹ Pu χ - ²³⁹ Pu χ	0.431	239 Pu χ - 239 Pu χ	0.325	
$^{240}{ m Pu}$ (n,f) - $^{240}{ m Pu}$ (n, γ)	-0.419	$^{238}\mathrm{U}$ (n, γ) - $^{239}\mathrm{Pu}$ χ	-0.260	
238 U (n,n') - 238 U (n,f)	-0.346	²³⁹ Pu (n,f) - ²³⁹ Pu (n,f)	0.249	
²³⁹ Pu (n,f) - ²³⁹ Pu (n,f)	0.316	239 Pu $\overline{\nu}$ - 239 Pu $\overline{\nu}$	0.245	
238 U (n, γ) - 238 U (n, γ)	0.303	²³⁹ Pu (n,f) - ²³⁹ Pu <i>v</i>	-0.229	
238 U (n,n') - 238 U (n, γ)	0.298	$^{238}\mathrm{U}$ (n,n') - $^{239}\mathrm{Pu}~\chi$	-0.225	
$^{239}\mathrm{Pu}~ar{ u}$ - $^{239}\mathrm{Pu}~ar{ u}$	0.295	²³⁸ U (n,n') - ²³⁸ U (n,n')	0.221	
$^{238}{ m U}$ (n,f) - $^{238}{ m U}$ (n, γ)	0.198	$^{238}\mathrm{U}$ (n, γ) - $^{238}\mathrm{U}$ (n, γ)	0.214	
TOTAL	1.036	TOTAL	0.306	

Motivation

- 2 Nuclear data assessment pipeline
- 3 Nuclear data assessment for SFR simulation

4 Conclusions and future work

- Conclusions
- Future work

Motivation

- 2 Nuclear data assessment pipeline
- 3 Nuclear data assessment for SFR simulation

4 Conclusions and future work

- Conclusions
- Future work

- Framework for nuclear data validation targeting SFR analyses: recommendations on related nuclear data needs.
- Integral experiments can play an important role on the nuclear data life cycle in combination with data assimilation techniques.
- This framework allows to evaluate the nuclear data performance for SFR analyses, providing recommendations on related needs and priorities.
- Data adjustment as a key computational approach for nuclear data assessment.

Motivation

- 2 Nuclear data assessment pipeline
- 3 Nuclear data assessment for SFR simulation

4 Conclusions and future work

- Conclusions
- Future work

Future work

- Accurate estimation of correlations in experiment uncertainties.
- Extension of SCALE capabilities to include kinetic parameters.
- Extension of experimental database for more comprehensive adjustment analysis.
- The application of TSURFER for the assessment of the latest JEFF-4T2 library is currently ongoing (lack of crucial covariances: ⁵⁶Fe, ²³⁹Pu, ²⁴⁰Pu)

Thank you for your attention

This work is part of the SANDA project (Supplying Accurate Nuclear Data for energy and non-energy Applications) that has received funding from the European Union's H2020/Euratom under grant agreement No. 847552.