

IDOM Experiences with the Databases ICSBEP, SINBAD & SFCOMPO

IDOM Nuclear Services in the world

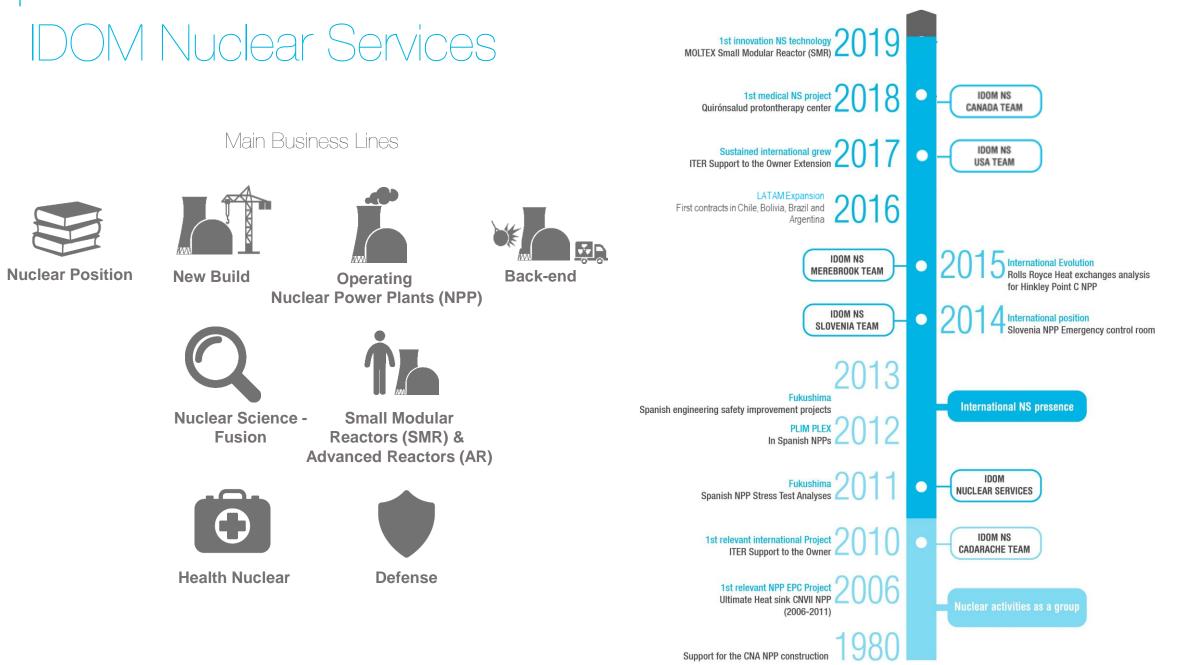
MORE THAN:

projects

IDOM

Over years

people


countries

#8

in international nuclear engineering design ranking

*ENR Global Sourcebook 2021

Spain, UK, Slovenia, Slovakia, Bulgaria, Ukraine, Lithuania, Finland, China, Mexico, Bolivia, Brazil, Argentina, Chile, Colombia, Belgium, Netherlands, Israel, Sweden, Emirates, Canada, France, Turkey, Czech Republic, Saudi Arabia, Croatia.

Main Stakeholders

IDOM has worked together with the main players in the international nuclear ecosystem

IDOM Experiences with the Databases ICSBEP, IRPHEP, SINBAD y SFCOMPO

- > Training & learning
- Support to CODE validation: modeling and analysis of the FNG-ITER Benchmark of SINBAD database

Replicate benchmark experiment in simulations

Study effects of technological uncertainties on the validation of CODE: Modelling and analysis of samples from ARIANE program (SFCOMPO)

Source of Information

Training & Learning

HEU-MET-FAST-002

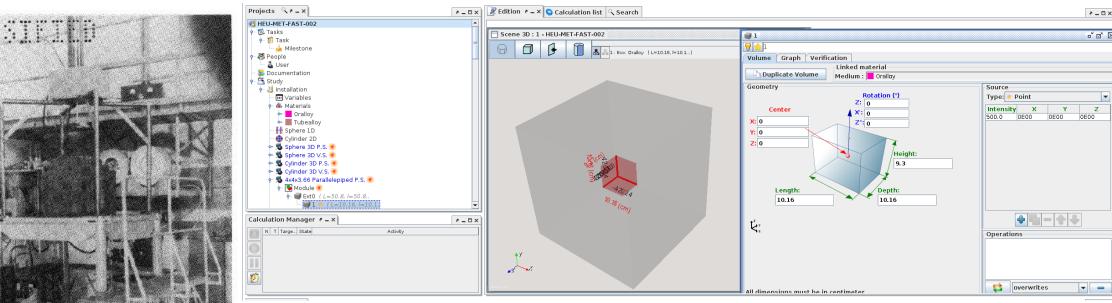
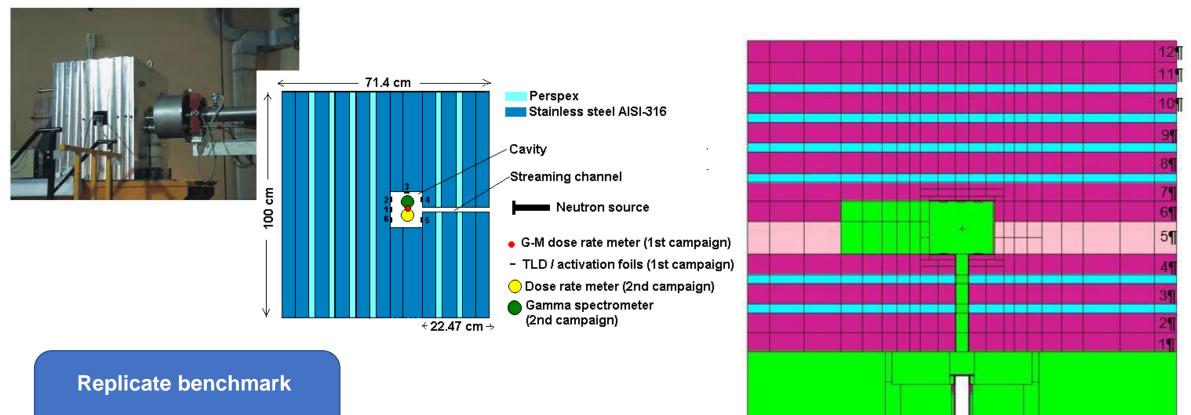


Table 7.a. Sample Calculations Results (United States).


Replicate benchmark

experiment simulations

Representation	KENO (16-group Hansen-Roach)	KENO (27-group SCALE ENDF/B-IV)	MCNP (Continuous Energy ENDF/B-V)	TWODANT (27-group SCALE ENDF/B-IV)
Sphere	0.9945 ± 0.0008	1.0075 ± 0.0009	1.0024 ± 0.0011	1.0083
Cylinder	0.9973 ± 0.0007	1.0082 ± 0.0009	1.0030 ± 0.0010	1.0079
4 x 4 x 3.66 Inch Parallelepiped	0.9938 ± 0.0007	1.0050 ± 0.0008	1.0020 ± 0.0010	NA
5 x 5 x 2.53 Inch Parallelepiped	0.9922 ± 0.0007	1.0045 ± 0.0009	1.0041 ± 0.0010	NA
3 x 3 x 7.56 Inch Parallelepiped	0.9933 ± 0.0007	1.0094 ± 0.0009	1.0039 ± 0.0010	NA
3 x 3.5 x 6 Inch Parallelepiped	0.9952 ± 0.0007	1.0035 ± 0.0010	1.0028 ± 0.0011	NA

Figure 1. Topsy with Tuballoy Tamper Assembly.

© IDOM Nuclear Services 2020

experiment in simulations

References provided with the Benchmark:

- Benchmark specifications in html format
- MCNP Inputs
- Final Report

SINBAD ABSTRACT NEA-1553/55

FNG-ITER DOSE RATE EXPERIMENT

1	message: ip
2	
3	DOSERATE EXPERIMENT
4	c Neutron transport - IRRADIATION MODEL
5	c cup di rame
6	1 3 -8.94 6 (1:7) -2 -8
7	c gap di acqua cilindrico
8	2 2 -1.0 6 8 -2 -9

EXPERIMENTAL VALIDATION OF SHUT-DOWN DOSE RATES

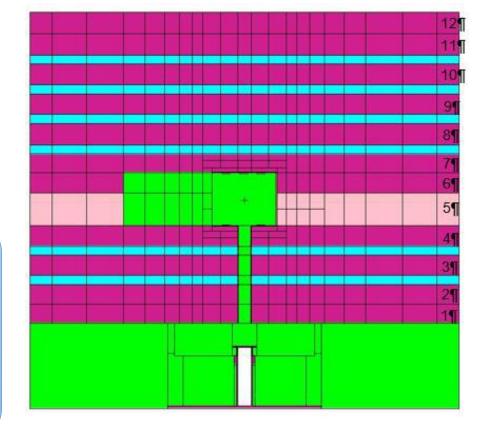
Replicate benchmark experiment in simulations

Materials

- Small discrepancies in the compositions given
- Discrepancies in the impurities considered
- Composition of Nickel activation foils not defined

		Element	wt% content	wt% content	wt% content
Element	wt% cor		Reference [2]	MCNP input files [2]	
	Reference	В	0.005	0.005	0.005
В	0.003	С	0.03	0.03	0.03
С	0.04	AI	-	-	<0.03
Si	0.45	Si	0.69	0.69	0.69
P	0.02;	Р	0.021	0.021	0.021
S	0.00	S	0.006	0.006	<0.01
V	0.16	V	0.12	0.04	0.12
Cr	16.8	Cr	17.8	17.81	17.8
	1.14	Mn	1.64	1.64	1.64
Mn		Fe	66.223	66.23	66.22
Fe	68.3	Со	0.07	0.07	0.07
Со	0.14	Ni	11.3	11.3	11.3
Ni	10.7	Cu	0.09	0.09	0.09
Cu	0.09	As	-	-	<0.01
Мо	2.12	Zr	-	-	<0.03
Sn	0.00	Nb	-	0.011	<0.01
Pb	0.00	Мо	2	2	2
Total	99.99	Sn	0.004	0.004	<0.01
Table A1-9: Comparison of chemical c except the fifth one between		Ti	-	-	<0.01
		Pb	0.001	0.001	<0.01
Ta	ble A1-10: Cor	Total	100	99.948	

Replicate benchmark

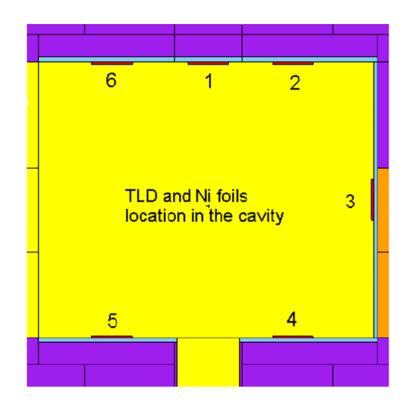

experiment in simulations

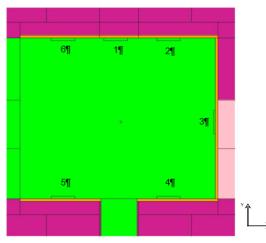
Nuclear Services 2020

Geometry

• Position and thickness of Layer 5

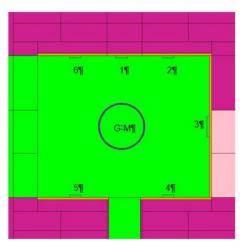
This discrepancy may come from the fact that when the 2-mm thick bottom and lateral walls, and the additional coating surrounding cavity center had been added, the position of layer number 5 has not been adjusted to this new configuration.

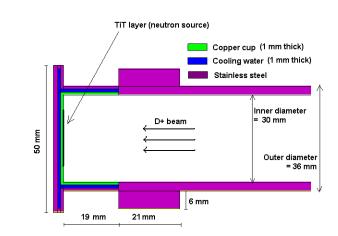

laterial	lhickness [cm]	Location on the y-axis [cm]
First part	: (100 cm x 100 cm	cross-section):
SS316	4.35	5.6 9.95
SS316	4.65	9.95 14.6
Perspex	2.06	14.6 16.66
SS316	4.65	16.66 21.31
Perspex	2.06	21.31 23.37
SS316	4.60	23.37 27.97
SS316	7.70	27.97 35.67 fifth laye
SS316	4.90	35.67 40.57
SS316	4.17	40.57 44.74
Perspex	2.06	44.74 46.8
SS316	4.95	46.8 51.75
Perspex	2.06	51.75 53.81
SS316	4.80	53.81 58.61
Perspex	2.06	58.61 60.67
SS316	4.80	60.67 65.47
Perspex	2.06	65.47 67.53
SS316	4.90	67.53 72.43
SS316	5.00	72.43 77.43

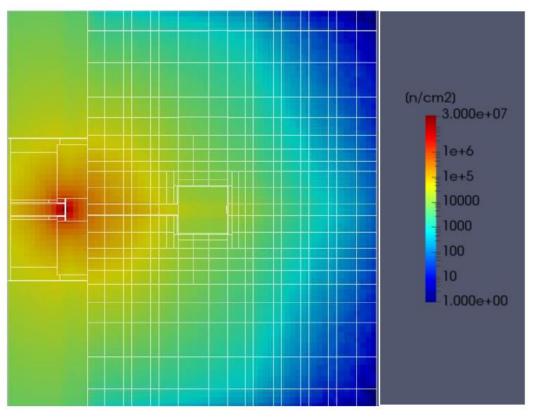

	90	ру	25.3	3				
c ·		piano py	-	definire 28.17	una	parete	interna	scatola
с с	pia	ani lir	nite	del bloc	co pe	erspex -	- <u>s</u> s	

Geometry

- Nickel Activation foils:
 - Small discrepancies on foil 3
 thickness
- TLD detectors
 - Discrepancies on TLD 3
 radius


Replicate benchmark experiment in simulations


IDOM


Figure 5-6: Central cavity and Ni activation foils on cavity walls (XY view)

Source

 Routines *source.f* in MCNP5/X format not compatible with MCNP 6.2

Replicate benchmark experiment in simulations

Materials

- Small discrepancies in the compositions given
- Discrepancies in the impurities considered
- Composition of Nickel activation foils not defined

Geometry

- Position and thickness of Layer 5
- Nickel Activation foils:
 - Small discrepancies on foil 3
 thickness
- TLD detectors
 - Discrepancies on TLD 3
 radius

Source

• Routines *source.f* in MCNP5/X format not compatible with MCNP 6.2

Obtaining results in agreement with the benchmark is difficult mainly due to the source definition

Study effects of technological uncertainties on the validation of CODE: Modelling and analysis of samples from ARIANE program (SFCOMPO)

● Sample ARIANE-GU3

- All necessary data obtained from SFCOMPO and/or ARIANE program final report
- Typical uncertainties and manufacturing tolerances obtained from SFCOMPO Evaluation Guide
- > XS libraries:
 - JEFF-3.1
 - JEFF-3.2
 - ENDF/B-VII.0
 - ENDF/B-VII.1

Source of Information

Parameter	Uncertainty/tolerance
Fuel pellet diameter	± 20 μm
Fuel pellet density	± 1 %
Enrichment (235U wt%)	± 0.05 %
Core power	±2%
Water moderator density	± 0.005 g/cm ³
Boron content in water	± 10 ppm
Water moderator temperature	± 2° C
Fuel temperature	± 100° C

Table 6-1: Values of typical uncertainties extracted from [3]

Туре	PWR	
Name	Gösgen	
Country	Switzerland	
Total number of assemblies	177	
Thermal power	3002	MW
Electric power	1020	MW
Fuel type	UO ₂	
235U/U	4.1	%
Pu/U+Pu		%
Gd2O3/oxide		%
Active fuel length	355.0	cm
Fuel density	10.4	g/cm ³
Estimated sample burn up	52.5	MWd/kg _{HM}
Lattice type	15 x 15	
Assembly pitch	21.56	cm
Pin pitch	1.43	cm
Fuel pins	205	
Guide tubes	20	
Instrumentation tubes	0	
Guide tube material	Zr-4	
Guide tube outer radio	0.69	cm
Guide tube inner radio	0.62	cm
Cladding material	Zr-4	
Cladding outer radio	0.5375	cm
Cladding inner radius	0.465	cm
Pellet radius	0.4555	cm
Central gap		

IDOM

Table 5-2: Overview of the characteristics of the ARIANE.GU3 sample.

Cycle	Core periphery	Neighbor assembly type	Start date	End date
16	No	-	June 29, 1994	June 10, 1995
17	No	-	July 05, 1995	June 08, 1996
18	No	-	June 30, 1996	June 07, 1997

Table 5-3: Operational cycles for the ARIANE.GU3 sample

Study effects of technological uncertainties on the validation of CODE: Modelling and analysis of samples from ARIANE program (SFCOMPO)

• Sample ARIANE-GU3

- All necessary data obtained from SFCOMPO and/or ARIANE program final report
- Typical uncertainties and manufacturing tolerances obtained from SFCOMPO Evaluation Guide
- > XS libraries:
 - JEFF-3.1
 - JEFF-3.2
 - ENDF/B-VII.0
 - ENDF/B-VII.1

Source of Information

Parameter	pcm dif	- Inside 3σ	
Farameter	minimum maximum		
Fuel pellet diameter	0	150	yes
Fuel pellet density	0	150	yes
Enrichment	200	400	no
Power	0	600	no
Water density	0	200	no
Boron content	0	200	no
Water moderator temperature	0	100	yes
Fuel temperature	0	400	no

Table 8-1: Results of ARIANE GU3 sample

Final Remarks

16

Benchmark databases are a good tool,

not only for replicating the benchmark for code validation,

also are a good source of exercises

and information in general

While ICSBEP & SFCOMPO are very well structured,

SINBAD database seems to have more contradicting information

NUCLEAR

REACTO SAFET MANU SECURITY

Muchas Gracias