

Analysis of a PWR-type SMR using SEANAP system

Andrés Espaliú et al. (Grupo INGENIA 2021-2022) MASTER IN INDUSTRIAL ENGINEERING E.T.S. de Ingenieros Industriales Universidad Politécnica de Madrid (UPM), Madrid, Spain

Professor O. Cabellos

Universidad Politécnica de Madrid (UPM), Madrid, Spain E-mail: <u>oscar.cabellos@upm.es</u>

INGENIA-NUCLEAR 2021/22: Scope

□ INGENIA/NUCLEAR-2021/22 is focused on:

- Neutronic Design of Small Modular Reactors PWR-type: NuScale 160 MWth
- □ Simulation PWR Core Analysis: System "SEANAP" ⇒ "Updated" SEANAP to SMRs

1. Testing ATFs - cladding materials

□ ATF – Accident Tolerant Fuels - Cladding Materials /INGENIA 2019/2020

https://ceiden.com/programas/grupo-siren-simulacion-de-reactores-nucleares/segunda-jornada-ceiden-upm-accident-tolerant-fuels-for-lwrs/

- **Zr+Coatings:** Cr-20 microns coating, $\rho_{Cr} = 7.15 \ g/cm^3$
- **FeCrAI- clad**: Fe 80.80 wt%, Cr 13 wt%, Al 6.20 wt%, clad thickness: $300\mu m$

Boron letdown

□ Simulations with SEANAP

- Changes in clad only in fuel rods
- NuSCALE core
- Nuclear Data: ENDF/B-VII.1

1. Testing ATFs - cladding materials

□ Heat Flux Hot Channel Factor (F_Q)

 $F_Q = \frac{max.local LHGR}{average LHGR} = \max[Q(z)]$

LHGR is Linear Heat Generation Rate (W/cm)

 $\mathsf{Q}(\mathsf{z})$ is the maximum linear power at elevation-z

D Enthalpy Peaking factor ($F_{\Delta H}$)

$$F_{\Delta H} = \frac{max. chhanel \ enthalpy \ rise}{core \ average \ entalphy \ rise} = \max[\frac{\Delta H}{avg \ \Delta H}]$$

1. Testing ATFs:

"Equivalent Cycle Length"

Upgraded SEANAP with WIMSD5:

INGENIA 2018/2019

SEANAP:

• WIMS-D5 (Lattice code) + COBAYA + SIMULA

Nuclear Data:

- JEF-2.2, JEFF-3.1 and ENDF/B-VII.1: <u>https://www-nds.iaea.org/wimsd/</u>
- JEFF-3.3 and ENDF/B-VIII.0: INGENIA 2018/2019

IAEA-WIMS Library Update Project

A S Martines://ww	/w-nds.iaea.org/wimsd/		
WI UP Home Page	X		
X Google	- Durren Máx XX. Anada 🕅 -		
× Obogie	Uscal • Mas 2 Acceder •		
Секция	Atomic Energy Agency ear Data Services Ядерных Данных МАГАТЭ Беаrch.		
Hot Topics » IAEA-CIE ENDF/B-VIII.0	iLO • TENDL-2017 • JENDL-4.0u2 • NewsDamage cross section database extended by SS-316 and		
☆ Quick Links			
	WIMS Library Update		
STAYSL PNNL			
Safeguards Data SigmaCalc	Processing Documents Benchmarks Downloads Contributors		
Spallation models			
Libraries	NEWS!		
Standards Stopping Power Data	28 November 2014		
for Light Ions	- Some programs, procedures and data files were updated.		
Thermal Scattering	- Plots were updated.		
Law Library Generator Thermal neutron	- Temperature range extended up to 2000 K for actinides and fuel materials.		
capture gamma rays	- Burn-up chains extended to higher actinides up to Cf-254.		
URRPACK	- Dosimetry materials updated from IRDFF-v.1.05 or ENDF/B-VII.1 evaluated data.		
WIMSD-IAEA Library	28 January 2008		
X and Gamma-rays	- Due to a bug in NJOY processing multigroup data the WIMS-D library based on		
standards	ENDF/B-VII data		
	- Corrected WIMSD libraries based on the ENDF/B-VII.0 data were uploaded.		
	- Plots were updated.		
<	>		

Ref: https://www-nds.iaea.org/wimsd/

Boron letdown in NuScale

- Simulations with SEANAP
 - Reference: ENDF/B-VII.1
 - o Changes only ND library
 - ND libraries (Decay Data, Fission Yields and Neutron Interaction):
 - JEF-2.2, JEFF-3.1 and JEFF-3.3
 - ENDF/B-VII.1, ENDF/B-VIII.0

□ Impact of ND libraries:

• Significant changes in JEFF-3.3

Heat Flux Hot Channel Factor (F_Q)

Axial Offset (A.O.)

□ Impact of ND libraries:

• Small differences in power peaking and axial distribution

Temperature Reactivity Coefficients

Power Reactivity Coefficient

Power (in %)

Wor

3. Operational Maneuvering in

Operational Manoeuvring: "Technical Specifications"

- Control Rod Insertion Limit
- Constant Axial Offset Control (CAOC) is implemented in SEANAP

Example of operational manoeuvres using SEANAP

- Power Maneuvering
 - Flexible operation, return to power after a short shutdown, etc ...
 - As a function of burnup: BOC, MOC, EOC

• Analysis of simulations

- Xenon Level versus time
- Boron Concentration versus time
- Control Rod position versus Relative Power
- Axial Flux Difference (AO·Prel) versus Relative Power
- P·FQ versus time

SMRs

3.1 Control Rod Insertion Limit

Control Rod Insertion : Limiting Condition for Operation

Rod Cluster Control Assemblies (RCCAs) are uniformly located in the core

- Regulating group (RE1+RE2) for power control
- Shutdown group (SH3+SH4)

Figure. Control Rod insertion limit

Ref: Fig4.3.2 at https://www.nrc.gov/docs/ML2022/ML20224A492.pdf

Control Rod insertion limit will allow to:

- reduce the decrement of reactivity worth
- limit F_{AH}*P
- secure shutdown margin

Control Rod "Groups" are divided into "banks" to :

- avoid the effect on the power distribution
- avoid large reactivity change in control insertion

Ref: Fig4.3-18 at https://www.nrc.gov/docs/ML2022/ML20224A492.pdf

Workshop on "Neutronic Design of SMRs", UPM, Madrid (Spain). May 19, 2022. (video-conference)

3.2 Constant Axial Offset Control (CAOC) INDUSTRIALES is implemented in SEANAP

Axial Flux Difference : Limiting Condition for Operation

Axial power distribution can be controlled by the Constant Axial Offset Control (CAOC)

• Axial Flux Difference (AFD)

 $\Delta I(\%) = AO \cdot P_{rel} (\%)$

- $\circ \Delta I$ Range: ±5% to:
 - ensure peaking factor limits: Low $\Delta I \Rightarrow \text{low } F_Q$
 - reduce ¹³⁵Xe/¹³⁵I axial oscillations
- **Relaxation in CAOC** restrictions will allow to:
 - enhance load follow capability by allowing control strategies that minimize dilution/boration
 - increase the ability to return to power after shutdown

Figure. Axial Flux Difference (AFD) Limits as a functions of rated thermal power

3.3 Example of operational maneuvers in NuScale

3.3 Example of maneuvers: 48h-50%-BOC: CAOC vs OPTIM

4

3.3 Example of maneuvers: 48h-50%-CAOC: BOC vs EOC

5

□ The SEANAP 3-D Core analysis system has been used to carry out this work:

o Testing ATFs (Accident Tolerant Fuels) cladding materials

- Cr- 20 μm coating
- FeCrAl- clad with 300 μm thickness

• The impact of different nuclear data libraries

- JEF-2.2, JEFF-3.1 and JEFF-3.3
- ENDF/B-VII.1 and ENDF/B-VIII.0

• Simulation of Maneuvers/Operation in NuScale with SEANAP system

Acknowledgments

This work is part of the McSAFER project (IMPROVING SAFETY ANALYSIS METHODOLOGIES AND MOVING FROM TRADITIONAL TO HIGH-FIDELITY SAFETY ANALYSIS TOOLS FOR SMALL MODULAR REACTORS) that has received funding from the European Union's H2020/Euratom under grant agreement No. 945063

Back-up Slides

2. Review ANSI/ANS: TAR Tables for PWRs

Required physics characteristics to be confirmed/test criteria ... industry!

Test parameters	Test criteria
HZP critical boron	$\pm 50~\mathrm{ppm}$ or $\pm 500~\mathrm{pcm}$ equivalent
Control rod worth Individual group or user-specified group Sum of groups or total integral of measured worths	$\pm 15\%^{1)}$ or ± 100 pcm, whichever is greater (For rod swap, the reference group should be within 10%.) $\pm 10\%^{1)}$ (For DRWM, the total worth should be within 8%.)
ITC	$\pm 2 \text{ pcm/°F}$
Flux symmetry Deviation between the highest and lowest values in the symmetric locations	$\pm 10\%^{2)}~(Meas~{ m versus}~Meas)$
Power distribution	± 0.10 RPD for each measured assembly power $\rm rms^{3)}~(radial) < 0.05$
HZP to HFP reactivity measurement	± 50 ppm or ± 500 pcm equivalent or $\pm 10\%^{1)}$

¹⁾ For calculating percent differences use $(Meas - Pred) \times 100/Pred$, where *Meas* indicates the measured value and *Pred* indicates the predicted value. Having percent difference defined with *Pred* (i.e., predicted) in the denominator is consistent with comparisons of measured-versus-predicted data for safety-related purposes (e.g., total control rod worth and peaking). This definition of percent difference simply recognizes that PWR reload cores are licensed with calculated (predicted) data.

²⁾ Percent difference is $(Highest - Lowest) \times 100/Avg$, where Highest is the largest measured value in a particular symmetric location, Lowest is the smallest measured value, and Avg is the average of all the measured values in the same symmetric location (which could be 2, 4, or 8 values).

³⁾ The rms is defined as $\sqrt{\sum_{i=1}^{N} \frac{(\Delta \text{RPD})_i^2}{N}}$.

Note: DRWM: dynamic rod worth measurement

Note ITC: isothermal temperature coefficient

Note: RPD: relative power density

Note: HZP: Hot Zero Power HFP: Hot Full Power

Ref.: ANSI/ANS-19.6.1-2011. American National Standard Reload Startup Physics Tests for PWRs

WPEC Subgroup 46. November 25-26, 2019. OECD-NEA Headquarters, Boulogne-Billancourt, France

https://www.oecd-nea.org/download/wpec/sg46/meetings/2019-11/documents/15.1-Cabellos.pdf

Back-up Slides

2.1. TAR Tables for PWRs

Design and Acceptance Criteria for Start-up and Operation in PWRs

Core parameter	Design criteria	Acceptance criteria
Critical boron concentration ARO	$ (C_B)^{M}_{ARO}-(C_B)^{C}_{ARO} < 50 \text{ ppm}$	$ \alpha C_B \ge \Delta (C_B)_{ARO} \le 1000 \text{ pcm}$
Isothermal temperature coefficient ARO at HZP	$ (\alpha^{ISO}_{T})^{M}_{ARO} - (\alpha^{ISO}_{T})^{C}_{ARO} < 3.6 \text{ pcm}^{/0}C$	$ (\alpha^{\rm ISO}_{\rm T})^{\rm M}_{\rm ARO} - (\alpha^{\rm ISO}_{\rm T})^{\rm C}_{\rm ARO} \le 6.62 \text{ pcm}^{\rm 0}{\rm C}$
Moderator temperature coefficient ARO at HZP	$(\alpha^{\text{CTM}})^{\text{HZP}}_{\text{ARO}} < 9 \text{ pcm/}^{\circ}\text{C}$	
Boron Worth Coefficient at HZP	$ (\alpha C_B)^{M}-(\alpha C_B)^{C} < 0.7 \text{ pcm/ppm}$	
Control banks worth for Reference Bank	$ (I^{\text{REF}})^{\text{M}}$ - $(I^{\text{REF}})^{\text{C}} \le 0.10 x (I^{\text{REF}})^{\text{C}}$	$\mid (I^{\text{REF}})^{\text{M}} \text{-} (I^{\text{REF}})^{\text{C}} \mid {<} 0.15 x (I^{\text{REF}})^{\text{C}}$
Control Bank Worth value for other Banks using Rod Swap Technique	$ (I^{CBW})^{M}$ - $(I^{CBW})^{C} < 0.15x(I^{CBW})^{C}$ or 100 pcm	$ (I^{CBW})^{M} - (I^{CBW})^{C} < 0.30x(I^{CBW})^{C} \text{ or } 200 \text{ pcm}$
Total Control Bank Worth	$1.10 \text{ x}(I^{\text{TOT}})^{\text{C}} > (I^{\text{TOT}})^{\text{M}} > 0.9 \text{x}(I^{\text{TOT}})^{\text{C}}$	$(I^{\text{TOT}})^{\text{M}} > 0.9 \text{ x} (I^{\text{TOT}})^{\text{C}}$
Axial Offset	(AO) ^M -(AO) ^C < 3%	
Max. Relative Assembly Power (P _A)		

Note: ARO: All Rods Out

Note: According IAEA Safety Glossary, "Design limits" are used interchangeably with "safety limits" or "acceptance criteria".

Ref.: O.Cabellos et al. Propagation of Nuclear Data Uncertainties for PWR Core Analysis. NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.46 NO.3 JUNE 2014.

WPEC Subgroup 46. November 25-26, 2019. OECD-NEA Headquarters, Boulogne-Billancourt, France

https://www.oecd-nea.org/download/wpec/sg46/meetings/2019-11/documents/15.1-Cabellos.pdf