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UK Fuel Ambition: Development of Fuels with
Enhanced Sustainability, Safety & Economics
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using Indigenous UK R&D Skill & Facility Base '

Enhanced Sustainability
and Economics
» Improved Burn Ups
« Re-use of Recycled Fissile Materials
* Recycle of minor actinides
« Better Operational Flexibility
« Better Manufacturability

Enhanced Safety During

Accident Conditions

« Lower Fuel Temperatures in Normal
Operation Leading To Increased
Margins in Accident Conditions

« Low or Zero Hydrogen Production and
Associated Chemical Heating of the
Cladding.

« Enhanced Fission Product
Containment

« Enhanced Fuel Retention within
Cladding
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Projects on Fast Reactor Systems

- MARISA (FP7)

* Project to build an international research consortium
around the MYRRHA accelerator driven system (ADS)

- ESNII+ (FP7)
« WP1 Leader, Contributions to WP2, WP3, WP4 and WP5
« WP6 - ALLEGRO Core Physics Benchmarks

« WP7 - Development of high Pu content fast reactor fuels
and understanding the safety of fuel manufacturing
processes.

- DEMOCRITOS (H2020)

* Development of small gas or liquid-metal cooled fast
reactor for space nuclear-electric propulsion systems
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* Fuel cycle simulation computer programs are used to assess
the impacts that different fuel cycle scenarios may have on:
 Uranium ore requirements,
 Ability to start a sustainable fast reactor fleet,

« Time at which feed of natural uranium is no longer required

« Packing density and inventory of a geologlcal repository under
different partitioning scenarios

= e

« The practicalities of handling fresh
minor-actinide bearing nuclear fuel

« Processing of spent nuclear fuel

« Requirements for high level waste
immobilisation technologies

NNL's ORION code has been used to
assess the impacts of the alternative
partitioning and transmutation scenarios
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LWRs to fast reactors - Scenario (a) ;

EPR new build

Installed nuclear capacity (GW(e)]

AP1000 new build

» 75 GWe target installed capacity
 FRs introduced at same rate as LWRs retire
* LWRs fuelled on mixture of UO, and MOX
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LWRs to fast reactors - Scenario (b)

Installed nuclear capacity (GW(e))
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» 75 GWe target installed capacity
* FRs introduced at same rate as LWRSs retire
* LWRs fuelled only with UO,
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* Blue curve - two successive 75 GWe LWR fleets
* Red curve - a 75 GWe PWR fleet followed by a 75 GWe SFR

fleet —@
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Components and Materials

 CEA Programme - Phenix Treasure

 CEA has a programme to carry out PIE on fuels and
components irradiated in Phenix.

» Possibility to examine some of these materials in the UK.

» Transport of these materials is very difficult ... so UK
contribution is ....

* PFR Treasure

 Identification of stored interesting components and
materials irradiated in PFR
« 1st Stage - Identification
- 2nd Stage - Storage at Sellafield
 3rd Stage - PIE
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No of

No of Sub pins Burn-up (%) Pu enrichment Cladding

assemblies Min Max min max
Sub-
assemblies 71 20,369 2.2 19.6 15.9 33.8 M316, PE16, HL548
Radial
breeders 14 1,226 0.1 2.4 - - M314, PE16, FVv448
Clusters 33 553 0.2 11.9 0.0 33.2 M314, PE16, FV548
Loose pins 133 0.3 23.2 12.5 33.6 M314, PE16, FV548
Carbide 2 clusters, 5 mixer breeder sub-assemblies and 8 radial breeder sub-assemblies
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 Fuel listing data include:
« Assembly/pin identity
« Assembly type
« Design report
« Drawing number
* Pin diameter and length
» Cladding material
* No of grids
» Grid materials
 Core location
 Irradiation cycle discharged
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 Unirradiated fuel assemblies

e air stored

« Carbide fuel
e irradiated and
 unirradiated

» Structural components

e core and

* primary circuit
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Developing a state-of-the-art capability for

fast reactor fuel performance modelling it
« Collaboration with INL e e

* NNL will develop BISON for fast reactor oxide fuel

 INL will develop BISON for fast reactor metal fuel

» Oxide fuel capability will be benchmarked against TRAFIC

Fuel performance
expertise

Advanced computational
modelling expertise

Fast reactor oxide
fuel experience

Fast reactor metal
fuel experience

Idaho National Loborotor;_‘i“l‘_x
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» Strategic fit with UK nuclear energy R&D roadmap Example visualisation of
» Underpins design & licensing of UK fast reactors and their fuel ~ 2>08 e rod

temperature distribution

* including PRISM predictions
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« IR&D Project - PRISM Core Neutronics Model

« Objective - to form an independent view of the ability of the PRISM
reactor to burn the UK’s civil plutonium stockpile

« ALLEGRO

« Benchmark calculations of the ALLEGRO start-up core as part of
ESNII+ WP6

« OPUS
« Assessment of the CEA gas-cooled space fast reactor.
« Exploration and potential scale-up to 1MWe

« SP-100
« USDOE/NASA concept for a liquid lithium cooled space fast reactor
« Molten Salt Fast Reactors

« Independent calculations to inform our input into the debate
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« SP-100 core concept

« Small electrical output
 Liquid metal cooled

* OPUS core concept
» Significant CEA/CNES project
« 1300K core outlet temperature
« Small thermal & electrical output
» Gas cooled

« (Other concepts exist. Chosen based on
availability of data)
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SP100 - fuel and core NAT'ON&B%%ETLE’ﬁ.:O

858 fuel pins arranged to form | —— Satty o 9
cylindrical core Reactr Vesse ’ =3

Uranium nitride pellet stack —

« High heavy metal density (x1.4) =lowers enrichment required
+ Good thermal conductivity (x6 at high T) =higher power density
+ Good fuel swelling characteristics (cf oxide) =sufficient burnup

Coolant Inlet

PWC-11 + rhenium liner Fiow Passage
« Strong Doppler from cladding =helps load follow capability

« High degree of structural integrity =grace period during ac ] ::\V)\

Axial BeO reflector

« Improves neutron efficiency =lowers enrichment required

« Thermalises spectrum at top of core Re SEPARATOR DISK

« Moderates neutrons leaving core towards biological shield

o Bonded PWC-11/
Rhenium Barrier
Cladding

© UN Fuel
o W-25 Re Spring
e Depleted UN Insulator




Nuclear Electric Propulsion System .rional nuciear'®

LABORATORY ..
()

Layout ;

Propellant :
Static conversion Dynamic conversion » Xenon, Krypton, Argon
- Thermoelectric « Stirling » Lithium
- Thermoionic  Brayton * Hydrogen,...
- AMTEC » Rankine/Hirn
- Magneto Hydro Dynamic *Thermo-acoustic
PROPELLANT
Shield :
- Tungsten
- 'LiH, B,C \
Pors ELECTRIC
- | \ RADIATORS Ui Cf| THRUSTERS
3 L
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REACIES - % CONVERSION [ ™|DISTRIBUTION
w
I y 4
RADIATORS Power
\ proljﬁlsr?_mg —1 PAYLOAD
Fuel :
- Uranium (often enriched)
Coolant - Thrusters :
- Gaz (He-Xe) Direct circulation « Hall Effect
- Liquid (Na-K, Li) Heat pipes * MPD
Reflectors, cladding,.. Droplet radiators * lonic
« VASIMR

Refractory materials




NEP - The Radiator Problem AT N PoRaToRY o®

* For a system thermal efficiency of about 33%
2 MW of heat will be rejected for 1 MWe generated.

 The radiator is the main contributor to the mass of the
system so there is a strong driver to reduce the radiator
area and hence radiator mass.

» For a given temperature the radiator area is proportional to
the amount of heat rejected.

« For a given amount of heat rejected the radiator area is
inversely proportional to T4
» There is a conflicting requirement to both maximise thermal

efficiency and maximise the temperature at which heat is
rejected. Need to maximise the reactor outlet temperature.

Tail wagging the dog ? - legitimate in this case
Reactor design is driven by the need to optimise
radiator performance.
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Molten Salt Reactor
Experiment — Oak Ridge,

US, 1960s
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Gen IV Molten Salt Fast Reactor MSFR
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